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Elliptic curve cryptography



Classic Diffie–Hellman key exchange in a group G = ⟨P⟩ ∼= Z/NZ

Phase 1 Alice samples a secret a ∈ Z/NZ;
computes A := [a]P and publishes A

Bob samples a secret b ∈ Z/NZ;
computes B := [b]P and publishes B

Breaking keypairs (e.g. recovering a from A) = Discrete Logarithm Problem (DLP).

Phase 2 Alice computes S = [a]B.
Bob computes S = [b]A.

The protocol correctly computes a shared secret because

A = [a]P B = [b]P S = [ab]P

Computational Diffie–Hellman Problem (CDHP): recovering S from (P,A,B).
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Curve-based cryptography

Elliptic curves are the gold standard source of groups for DLP-based crypto.

The best known algorithm for solving DLP instances in E(Fp) for general
prime-order E is still Pollard ρ, in O(√p) group operations.

The weak curves (pairing-friendly, anomalous, ...) are easy to identify and avoid.

Generalizing from elliptic curves to higher-dimensional AVs is obvious:

• dimension g over Fq give groups of size ∼ qg;
• compressed keys encode to g logq bits;
• efficient representation and arithmetic is tricky (but let’s be optimistic...)
• constructing secure instances is a nightmare (but let’s be really optimistic...)

The bottom line: for g-dimensional AVs to be competitive with elliptic curves, we
need DLP hardness close to O(qg/2).
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Attacks in higher dimensions

Unfortunately, index calculus algorithms for solving DLPs work better and better
as the dimension of the abelian variety grows. We want Õ(qg/2), but...

• Jacobians of genus-g curves: Gaudry–Thomé–Thériault–Diem in Õ(q2−2/g)
• Jacobians of smooth degree-d plane curves: Diem in Õ(q2−2/d)
• Jacobians of genus-3 hyperelliptic curves: reduce to nonhyperelliptic using
isogenies (degenerate Recillas: S. 2007, Frey–Kani 2011) then Diem in Õ(q).

• General PPAVs, dim g > 3: essentially wiped out by Gaudry in Õ(q2−2/g).

Result: abelian varieties of dimension ≥ 3 are cryptographically inefficient.

For constructive cryptographic applications, we’re down to genus 1 and 2.
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Modern elliptic-curve cryptography



Modern Elliptic Curve Diffie–Hellman (ECDH)

Classic ECDH is just classic DH with E(Fq) in place of Gm(Fq):

A = [a]P B = [b]P S = [ab]P

Miller (1985) suggested ECDH using only x-coordinates:

A = x([a]P) B = x([b]P) S = x([ab]P)
= ±[a]P = ±[b]P = ±[ab]P

Compute x(Q) 7→ x([m]Q) with efficient differential addition chains such as the
Montgomery ladder.

Definitive example: Curve25519 (Bernstein 2006), the benchmark for
conventional DH (and now standard in OpenSSH and TLS 1.3).

Even better performance from Kummer surfaces with rich 2-torsion structure.
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Modern ECDH: where is the group?

x-only ECDH works because Diffie–Hellman has no explicit group operation.

A = [a]P B = [b]P S = [ab]P

Formally, we have an “action” of Z on a set X (here, X = G/⟨±1⟩).

In fact, the quotient structure G/⟨±1⟩ is crucial: it facilitates

• security proofs by relating CDHPs in X and G
• efficient evaluation of the Z-action on X : the group op on G induces an
operation (±P,±Q,±(P− Q)) 7→ ±(P+ Q) on X , which we use to compute
(m, x(P)) 7→ x([m]P) using differential addition chains.
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The quantum menace

Elliptic curve crypto is state-of-the-art.

Genus-2 crypto is an aggressive alternative.

But both are based on the hardness of DLP, which Shor’s quantum algorithm
solves in polynomial time.

Attacking real-world DH instances with Shor requires large, general-purpose
quantum computers. Q: Will sufficiently large quantum computers ever be built?

Say yes if you want to get funded.

Global research effort: replacing classic group-based public-key cryptosystems
with postquantum alternatives.
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Classical isogeny-based crypto



Principal homogeneous spaces

Let G be a finite commutative group acting on a set X , so

a · (b · P) = ab · P ∀a, b ∈ G, ∀P ∈ X .

X is a principal homogeneous space (PHS) under G if

P,Q ∈ X =⇒ ∃! g ∈ G such that Q = g · P .

Example: a vector space G acting on its underlying affine space X .
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The isogeny PHS

Key example of a PHS from CM theory for a quadratic imaginary field K:

Group: G = Cl(OK), the group of ideal classes of the maximal order of K
Space: X =

{
E/Fq | End(E) ∼= OK

}
/(Fq-isomorphism)

Action: Ideals a in OK correspond to isogenies ϕa : E → E/E [a] =: a · E .
This action extends to fractional ideals and factors through Cl(OK).

We have #G = #X ∼
√
|∆|, where ∆ = disc(OK) ∼ q.
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Forgotten identities

A PHS is like a copy of G with the identity 1G forgotten.

For each P ∈ X , the map φP : g 7→ g · P is a bijection G→ X .

Each φP endows X with the structure of G, with P as the identity element, via

(a · P)(b · P) = φP(a)φP(b) := φP(ab) = (ab) · P .

Each choice of P yields a different group law on X .
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A Diffie–Hellman analogue

We have an obvious analogy between Group-DH and PHS-DH:

A = [a]P B = [b]P S = [ab]P
A = a · P B = b · P S = ab · P

Security: need PHS analogues of DLP and CDHP to be hard.

Utility: need to be able to

• efficiently sample uniformly from a sufficiently large keyspace K ⊂ G

• efficiently compute the action (a,P) 7→ a · P for a ∈ K

For the CM PHS, sampling random a ∈ Cl(OK) is easy, but computing an isogeny
with kernel a is exponential in N(a). Couveignes suggested smoothing a to an
equivalent

∏
i l
ei
i (with small prime li) using LLL, then acting by the li in serial.
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Hard Homogeneous Spaces

Vectorization (Vec: breaking public keys):
Given P and Q in X , compute the (unique) g ∈ G s.t. Q = g · P.

P g
//_______ Q

Parallelization (Par: recovering shared secrets):
Given P, A, B in X with A = a · P, B = b · P, compute S = (ab) · P.

P a //_______

b
''N

NNNNNN A
b

''N
NNNNNN

B
a

//______ S
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Hard homogeneous spaces

A Hard Homogeneous Space (HHS) is a PHS where Vec and Par are
computationally infeasible.

• The vector/affine space PHS is not an HHS.
• The CM PHS is a conjectural HHS.

We have a lot intuition and folklore about DLP and CDHP.

• Decades of algorithmic study
• Conditional polynomial-time equivalences

What carries over to Vec and Par?
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How hard are hard homogeneous spaces?

Obviously, if we can solve Vecs

(P,Q = x · P) 7−→ x ,

then we can solve Pars

(P,A = a · P,B = b · P) 7−→ S = ab · P .

Let’s focus on Vec for a moment.

We can solve any DLP classically in time O(
√
N)

using Pollard’s ρ or Shanks’ Baby-step giant-step.

We can solve Vec in time O(
√
N) using the same algorithms!
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Baby-step giant-step: the same for DLP and Vec

Algorithm 1: BSGS in G

Input: g and h in G

Output: x such that h = gx

1 β ← ⌈
√
#G⌉

2 (si)← (gi : 1 ≤ i ≤ β)
3 Sort/hash ((si, i))βi=1
4 t← h

5 for j in (1, . . . , β) do
6 if t = si for some i then
7 return i− jβ

8 t← gβt

9 return ⊥ // Only if h /∈ ⟨g⟩

Algorithm 2: BSGS in (G,X )
Input: P and Q in X ; a generator g for G
Output: x such that Q = gx · P

1 β ← ⌈
√
#G⌉

2 (Pi)← (gi · P : 1 ≤ i ≤ β)
3 Sort/hash ((Pi, i))βi=1
4 T← Q
5 for j in (1, . . . , β) do
6 if T = Pi for some i then
7 return i− jβ

8 T← gβ · T

9 return ⊥ // Only if Q /∈ ⟨e⟩ · P
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Classical security of the isogeny PHS

Generic algorithms solve Vec in any PHS (G,X ) in time O(
√
#G).

In the case of the CM PHS, where #G = #Cl(OK) ∼
√q, the best classical

algorithm to compute unknown isogenies runs in time O(
√
#G) = O(q1/4)

(Galbraith–Hess–Smart 2002).

But what about using the structure of G?
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Classical limits of the DLP-Vec analogy: Pohlig–Hellman

The Pohlig–Hellman algorithm exploits subgroups of G
to solve DLP instances in time Õ(

√
largest prime factor of #G).

Simplest case: #G =
∏
i ℓi, with the ℓi prime.

To find x such that h = gx, for each i we

1. compute hi ← hmi and gi ← gmi , where mi = #G/ℓi;
2. compute xi such that hi = g

xi
i (DLP in order-ℓi subgroup)

We then recover x from the (xi, ℓi) using the CRT.

Problem: the HHS analogue of Step 1 is supposedly hard!
(Computing Qi = gi · P where Q = g · P is an instance of Par.)
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No Pohlig–Hellman

Funny: We don’t know how to exploit the structure of G to accelerate Vec or Par.

Surprise: classical acceleration shouldn’t exist in general. Why?

• Choose p from a family of primes s.t. all prime factors of p− 1 are in o(p).
• Now take a black-box group G of order p.
• Shoup’s theorem: DLP(G) is in Θ(

√p).
• Exponentiation yields a PHS (G,X ) = ((Z/pZ)×,G \ {0}),
and Vec in (G,X ) solves DLP in G.

• Now #G = p− 1, whose prime factors are in o(p),
so classical subgroup DLPs and Vecs are in o(√p);
a HHS Pohlig–Hellman analogue would contradict Shoup.
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Postquantum isogenies



How not to publish your work

1997: Couveignes submitted to Crypto; rejected. Forgotten. 2007: published in an
obscure SMF special issue, with an extremely helpful title and abstract.
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Rediscovery

2006: Stolbunov and Rostovtsev independently rediscovered Couveignes’
isogeny-based key exchange.

Essential differences:

• Instead of sampling a secret a ∈ Cl(OK) then smoothing it to a ∼
∏
i l
ei
i ,

they fix a set of small li and sample exponent vectors (e1, . . . , en),
hoping that this is close to uniform on Cl(OK).

• Everything is expressed in terms of walks in isogeny graphs,
which had come into fashion since Kohel’s thesis (1996).

• Rostovtsev and Stolbunov claimed postquantum security.

Stolbunov presented this at a 2006 workshop at LIX, which prompted Couveignes
to preprint his forgotten seminar notes.
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Isogeny graphs

The ℓ-isogeny graphs of curves with CM by OK are all cylic.

A key
∏
i l
ei
i corresponds to

1. e1 steps in the ℓ1-isogeny graph, then
2. e2 steps in the ℓ2-isogeny graph, then
3. e3 steps in the ℓ3-isogeny graph,
4. More walks ...

Rostovtsev and Stolbunov’s proof-of-concept implementation: extremely slow.
We re-implemented it at NIST security level 1: ≥ 2000s per DH.
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Why is this post-quantum?

We’ve seen classical generic DLP algorithms solve Vec instances,
so you might think quantum DLP algorithms should solve Vec instances too.

Shor’s algorithm solves DLP in polynomial time, but not Vec.

Vec is an instance of the abelian hidden shift problem: solve using variants of
Kuperberg’s algorithm in quantum subexponential time LN[1/2, 0].
=⇒ upper bound for quantum Vec hardness is LN(1/2) quantum actions.
=⇒ upper bound for quantum Par hardness is LN(1/2) quantum actions.

In a sense, BSGS and Pollard ρ are actually PHS algorithms
(with G acting on itself), not group algorithms!
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Quantum equivalence of Vec and Par

Galbraith–Panny–S.–Vercauteren (2019):
Unconditional quantum polynomial equivalence Par ⇐⇒ Vec.

Vec =⇒ Par: obvious. Par =⇒ Vec:

1. Compute basis {g1, . . . , gr} for G using Kitaev/Shor (if not already known)
2. Quantum Par circuit (P, a ·P, b ·P) 7→ ab ·P gives X an implicit group structure,
and µ : (x1, . . . , xr, y) 7→

(∏
i g
xi
i
)
· ay · P defines a homomorphism Zr × Z→ X ;

3. We can evaluate (y, a · P) 7→ ay · P, hence µ, using Θ(log n) calls to Par
4. Computing kerµ = {(x1, . . . , xr, y) : gx11 · · · g

xr
r a

y = 1G}
is a hidden subgroup problem (Shor again);

5. Any (a1, . . . ,ar, 1) in kerµ gives a representation a =
∏
i g
ai
i .
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Classical separation between Par and Vec

Curiously, in the classical setting we don’t have Par =⇒ Vec.

For classical CDHP =⇒ DLP we have a standard black-box field approach:

1. Reduce to prime order case (Pohlig–Hellman algorithm);
2. View G as a representation of Fp via G ∋ ga ↔ a ∈ Fp;

• for +, use group operation (ga, gb) 7→ gagb = ga+b

• for ×, use G-DH oracle (g, ga, gb) 7→ gab

3. den Boer, Maurer, Wolf, ...: conditional polynomial-time reduction.1

Does not work for Par =⇒ Vec, because Par oracle (P, a · P, b · P) 7→ ab · P
only yields a group structure on X , not a field structure.
1See the appendix for a quick sketch.
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Hashing with isogeny graphs



The supersingular ℓ-isogeny graph

What about supersingular elliptic curves over Fp2?

The ℓ-isogeny graph of supersingular curves over Fp2 is

• a (ℓ+ 1)-regular connected graph with ≈ p/12 vertices;
• an expander graph (a Ramanujan graph!);
• random walks become uniformly distributed after ≈ log p steps

The graph for ℓ = 2 made its first appearance in algorithmic number theory with
Mestre (1986), who used it to compute traces of the Hecke operator T2.
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The Charles–Goren–Lauter hash function

A cryptographic hash function maps long binary strings to compact values in
such a way that finding preimages and collisions is computationally infeasible.

Charles, Goren, and Lauter (2009) proposed a provably strong hash function
based on non-backtracking walks in the supersingular 2-isogeny graph:

1. Fix, once and forall, adjacent vertices j−1 and j0 (the base point).
2. Choose a “sign” on Fp2 .
3. For the i-th bit bi in the input string b0b1 · · ·bn:

• Φ2(ji, X) = (X− ji−1)(X− j+)(X− j−), where the roots j+ and j− are labelled using
the sign in the quadratic formula (say);

• we take ji+1 := j+ if bi = 0, or j− if bi = 1.

4. The output is jn (mapped linearly into Fp, to save space).
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Pros and cons

The Charles–Goren–Lauter hash function is extremely slow.

In its original form, using modular polynomials to compute neighbouring vertices,
you need to compute a square root in Fp2 to process each bit in the input!

(We can go faster using 2-torsion and explicit isogenies, but it is still much slower
than everyday cryptographic hash functions...)

However, it does enjoy nice number-theoretic security proofs.

• We know the graph’s spectral properties, diameter, etc.
• Finding collisions =⇒ finding cycles, which are necessarily very large.
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Takashima’s hash function

Question: What happens in genus 2?

Takashima (2018) suggested generalizing the Charles–Goren–Lauter hash function
using supersingular genus-2 Jacobians and Richelot isogenies:

• 2-isogenies are replaced with (2, 2)-isogenies
• The 3-regular 2-isogeny graph becomes a 15-regular (2, 2)-isogeny graph
• Ignore products of elliptic curves (extremely unlikely to hit one anyway)
• j-invariants are replaced with Igusa invariants

Takashima avoids backtracking, which means the hash function is driven by a
base-14 encoding of the input string!
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Not backtracking is not enough

Takashima’s hash turns out to be easy to break: we can trivially construct cycles
of length 4 anywhere (hence collisions).

(In the elliptic graph, we avoid backtracking to ensure that cycles have the
expected length, and that any cycles are necessarily extremely long...)

In the genus-2 graph, the composition of two (2, 2)-isogenies ψ ◦ ϕ can be

1. A (2, 2, 2, 2)-isogeny (ψ ∼= dual of ϕ; backtracking)
2. A (4, 4)-isogeny (kerψ ∩ imϕ = 0)
3. A (4, 2, 2)-isogeny (kerψ ∩ imϕ ∼= Z/2Z)

...And the composition of two non-dual (4, 2, 2)-isogenies can be a
(4, 4, 4, 4)-isogeny: that is, multiplication by 4 on the starting curve! This is a
trivially generated cycle of length 4.
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The superspecial graph

Castryck–Decru–S. (2019): repairing Takashima’s hash function.

First: the correct graph is the superspecial graph, comprised of abelian surfaces
that are unpolarizedly isomorphic to products of supersingular elliptic curves.

• the graph we start in anyway, and
(in fact, we don’t know how to construct a vertex outside this subgraph!)

• closed under (2, 2)-isogenies (or any separable isogenies).

We avoid not only backtracking, but any compositions giving (4, 2, 2)-isogenies:
this leaves 8 steps forwards at each vertex.
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Open questions

Our superspecial hash function is more funky2 than the elliptic supersingular
hash function.

The superspecial graph over Fp2 has size roughly p3, which means that we can
take p one-third the size of what we need for the elliptic graph. It’s also a good
opportunity to use efficient Kummer surface arithmetic.

But to prove any security properties, there are lots of things we need to know:

• Is the superspecial (2, 2)-isogeny graph connected?
• What are its expansion and mixing properties like?
• What happens when we avoid (4, 2, 2)-isogenies?

2In the absence of a mathematical definition of funkiness, this statement is vacuously true.
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Postquantum key exchange in the
full supersingular graph



The problem with HHS-DH

Breaking isogeny HHS keypairs over Fq requires O(q1/4) classical operations
(Galbraith–Hess–Smart, Galbraith–Stolbunov).

In 2010, Childs, Jao, and Soukharev found an LN(1/2) quantum isogeny evaluation
algorithm, which (combined with Kuperberg’s abelian hidden shift algorithm)
gives an LN(1/2) quantum attack on CRS.

This line of attack explicitly requires the action of a commutative group.

In 2011, Jao and De Feo proposed a key exchange based on composing isogenies,
but with no hidden commutative group: Supersingular Isogeny Diffie–Hellman.

CRS keys A long series of short walks in cyclic graphs.
SIDH keys One long walk in an expander graph.
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SIDH

Chose a prime p = c2m3n − 1. Supersingular E/Fp2 have E(Fp2) ∼= (Z/c2m3nZ)2.
We choose a base curve E0 and bases ⟨P2,Q2⟩ = E0[2m] and ⟨P3,Q3⟩ = E0[3n].

Phase 1 Alice samples a secret a ∈ Z/2mZ; computes the 2m-isogeny
ϕA : E0 → EA := E0/⟨P2 + aQ2⟩; publishes (EA, ϕA(P3), ϕA(Q3)).

Bob samples a secret b ∈ Z/3nZ; computes the 3n-isogeny
ϕB : E0 → EB := E0/⟨P3 + bQ3⟩; publishes (EB, ϕB(P2), ϕB(Q2)).

Phase 2 Alice computes the 2m-isogeny ϕ′A : EB → EBA := EB/⟨ϕB(P2) + aϕB(Q2)⟩;
derives the shared secret S = j(EBA).

Bob computes the 3n-isogeny ϕ′B : EA → EAB := EA/⟨ϕA(P3) + bϕA(Q3)⟩;
derives the shared secret S = j(EAB).
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SIDH keys

SIDH public key validation is extremely problematic.

Consider the path from the base curve P to Bob’s public key B:

P 3 // B1 3 // // 3 // Bn−1 3 // Bn = B

Suppose we have an oracle V3(X, Y, k) which returns True
iff there is a 3k-isogeny X→ Y; so B is valid if V3(P,B,n).

Compute the 4 neighbouring curves 3-isogenous to Bn (easy).
The curve C such that V3(P, C,n− 1) = True is Bn−1.
Iterating, we unwind the path from P to B, revealing Bob’s secret key.

See Galbraith–Petit–Shani–Ti (2016) for more details.
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From SIDH to SIKE

SIDH key validation is dangerous, so we cannot use SIDH for static or
non-interactive key exchange (NIKE).

The Fujisaki–Okamoto transform turns SIDH into an IND-CCA2 secure KEM, SIKE,
which has been submitted the NIST process.

The optimized C/assembly implementation of SIKE aiming at NIST security level 1
runs in about 10ms on a PC.
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Postquantum NIKE: HHS revisited



The search for a postquantum NIKE

By early 2017 there were plenty of postquantum Key Encapsulation Mechanisms
(KEMs), but there was still no drop-in replacement for classic DH.

In particular: no postquantum NIKE (to replace static DH).

• SIDH comes closest to matching the DH API, but can’t be used for
static/non-interactive key exchange (no public key validation)

• SIKE is a safe KEM but doesn’t match the API or do NIKE.
• Other postquantum paradigms (lattices, codes, multivariate, ...) offer
high-speed KEMs, but no exact DH equivalent.
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HHS-DH: the state of affairs

In theory, Couveignes–Rostovtsev–Stolbunov is a good candidate for
postquantum DH/NIKE:

• it has the same API as classic Diffie–Hellan,
• key validation is just verifying an endomorphism ring (which is easy).

In practice, CRS seemed way too inefficient...

...But Luca De Feo, Jean Kieffer, and I decided to go back and try it again.
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Towards practical commutative isogeny key exchange

De Feo–Kieffer–S. (Asiacrypt 2018): simple algorithmic improvements for HHS-DH.

• Faster ℓ-isogenies when kernel points are defined over Fqk with k≪
√
ℓ

• Exploiting quadratic twists to eliminate quadratic extensions

Parameter selection: need (OK,q) s.t. if X = {E/Fq with CM by OK}/∼=, then

1. ℓ | E(Fqk) with k small as possible for many small split ℓ;
2. #X = #Cl(OK) is very large (ideally ∼

√q), and
3. we can construct an E ∈ X in polynomial time.

Fully optimizing 1 =⇒ simultaneous control of OK and q =⇒ kills 2 and/or 3.

Best we can do: try random curves with an early-abort SEA, eliminating curves
with no tiny-order points and/or bad endomorphism rings, hoping for good 1...

Result: PoC implementation at NIST security level 1 completes a DH in 8 minutes. 37



CSIDH: a NIKE less ordinary

CSIDH (pronounced seaside) = Commutative Supersingular Isogeny DH
Castryck–Lange–Martindale–Panny–Renes (Asiacrypt 2018).

A cute solution to our parameter problem: we need a quadratic imaginary
endomorphism ring OK, but the isogeny class need not be ordinary!

Use the supersingular isogeny class over Fp, so K = Q(
√
−p).

This gives us full control over requirements 1 and 2, with easy 3.
Choose p such that p+ 1 = c

∏
i ℓi with all the small ℓi you want; we can easily

construct supersingular curves over Fp. Bonus: the twist trick always applies!

Result: PoC implementation at NIST security level 1 completes a DH in 100ms.
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Class group structures

When CSIDH was proposed in 2018, it used the 511-bit prime

p = 4 ·
( 73∏
i=1

ℓi
)
· 587− 1 where ℓi = i-th smallest odd prime

The class group Cl(Z[√−p]) is crucial, but nobody knew its order!

This is an extremely rare case of a cryptographic protocol using a group whose
structure is unknown but not secret. No Pohlig–Hellman: it shouldn’t matter?

Buellens–Kleinjung–Vercauteren, May 2019 (record class group computation!):

#Cl(Z[
√
−p]) = 3× 37× 1407181× 51593604295295867744293584889

× 31599414504681995853008278745587832204909 .
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Genus-2 key exchange

Question: what happens to all this in genus 2?

Genus-2 SIDH: first steps by Ti and Flynn (2019).

• Plenty of practical improvements to be made
• Security depends on the same open questions that we have for the
superspecial hash

Genus-2 CSIDH: looks hard!

• Computing higher-degree isogenies in genus 2 is feasible when you have a
lot of 2-level structure (Cosset 2011, Lubicz and Robert, 2012), which we do...

• But the isogeny graph structure is, again, more complicated! Might make
more sense to stick to abelian surfaces with RM by a class-number-1 ring.
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Conclusion



Conclusions

• In CSIDH, isogeny-based crypto now has a practical postquantum drop-in
replacement for Diffie–Hellman. Other protocols are in progress.

• Couveignes’ Hard Homogeneous Spaces framework helps to model and
analyse postquantum DH protocols on an abstract level, without
understanding the mechanics of isogenies

• Pre- and post-quantum DH have the same “API”,
but HHS-DH does not respect Group-DH intuitition.

• Genus 2 may give better algorithmic performance in some cases, but we
need to know more about the isogeny graphs to guarantee security
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The Maurer reduction: how does it work?

We want to solve a DLP instance h = gx in G of prime order p, given a DH oracle
for G (so we can compute gF(x), ∀ poly F):

1. Find an E/Fp s.t. E(Fp) has polynomially smooth order and compute a
generator (x0, y0) for E(Fp).
Pohlig–Hellman: solve DLPs in E(Fp) in polynomial time.

2. Use Tonelli–Shanks to compute a gy s.t. gy2 = gx
3+ax+b.

If this fails: replace h = gx with hgδ = gx+δ and try again...
Now (gx, gy) is a point in E(G); we still don’t know x or y.

3. Solve the DLP instance (gx, gy) = [e](gx0 , gy0) in E(G) for e.
4. Compute (x, y) = [e](x0, y0) in E(Fp) and return x.

Finding the curve E/Fp in Step 1 is the tricky part! It seems to work in practice for
cryptographically useful p, even if it doesn’t work in theory for arbitrary p.
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